Menu

.Publikacijos_MS

Prof. habil.dr. Mifodijus Sapagovas

PAGRINDINIŲ MOKSLINIŲ PUBLIKACIJŲ
SĄRAŠAS

MOKSLO STRAIPSNIAI
leidiniuose, įrašytuose į Mokslinės informacijos instituto
pagrindinių leidinių sąrašą

 1. M. P. Sapagovas, Finite-difference method for solution of qyasilinear elliptic equations with discontinous coefficients, Comput. Math. Math. Phys., 5(4), pp. 638-647, 1965 (In Russian).
2. M. P. Sapagovas, Investigation of nonclassical drop equation, Differ. Equations, 19(7), pp. 1271-1276, 1983.
3. M. P. Sapagovas, Numerical methods for two-dimensional problem with nonlocal conditions, Differ. Equations, 20(7), pp. 1258-1266, 1984.
4. M. P. Sapagovas, R. Čiegis, On some boundary problems with nonlocal conditions, Differ. Equations, 23(7), pp. 1268-1274, 1987.
5. M. P. Sapagovas, The finite difference method for the equation of the sessible drop, In: H. Amann et al. (Ed.), Navier-Stokes Equations and Related Nonlinear Problems, VSP/TEV, pp. 255-263, 1998.
6. M. P. Sapagovas, A boundary value problem with a nonlocal condition for a system of ordinary differential equations, Differ. Equations, 36(7), pp. 1078-1085, 2000.
7. M. P. Sapagovas, Investigation of the convergence of a difference method for the drop surface equation with the Neumann boundary condition, Differ. Equations, 37(7), pp. 1019-1025, 2001.
8. R. Baronas, F. Ivanauskas, M. Sapagovas, The influence of wood specimen geometry on moisture movement during drying, Wood and Fiber Science, 33(2), pp. 166-172, 2001.
9. M. P. Sapagovas, On the eigenvalue problem with a nonlocal condition, Differ. Equations, 38(7), pp. 1020-1026, 2002.
10. R. Baronas, F. Ivanauskas, J. Kulys, M. Sapagovas, Modelling of amperometric biosensors with rough surface of the enzime membrane, Journal of Mathematical Chemistry, 34(3-4), 2003, pp. 227–242.
11. R.Baronas, F. Ivanauskas, M. Sapagovas, Numerical investigation of the geometrical factor for simulating the drying of wood Mathematics in industry 5 (Progress in Industrial Mathematics at ECMI 2002), Springer-Verlag, Berlin Heidelberg New York, 2004, pp. 95–100.
12. M. P. Sapagovas, A. D. Štikonas, On the structure of the spectrum of a differential operator with a nonlocal condition, Differ. Equations, 41(7), pp. 1010-1018, 2005.
13. V. Dagienė, G. Dzemyda, M. Sapagovas. Evolution of the cultural-based paradigm for informatics education in secondary schools – two decades of Lithuanian experience Lect. Notes Comp. Sciences, 2006, ISSN 0302-9743, 4226, pp. 1–12.
14. J.Kleiza, M.Sapagovas, V.Kleiza. The extensionof the van der Pauw method to anisotropic media, Informatica.ISSN 0868-4952. Vilnius, IMI, 2007, 18(2), pp. 253–265.
15. M. Sapagovas, G. Kairytė, A. Štikonas, O. Štikonienė, Alternating direction method for a two-dimensional parabolic equation with a nonlo- cal boundary condition, Math. Model. and Analysis, 12(1), pp. 131– 142, 2007.
16. M. Sapagovas, Difference Method of Increased Order of Accuracy for the Poisson Equation with Nonlocal Conditions, Differen. Uravn. ISSN 0374-0641, 2008, 44(7), pp. 988–998; Differ. Equ.ISSN 0012-2661, 44(7), 2008, pp. 1018–1028.
17. M. Sapagovas, On the stability of a finite-difference scheme for nonlocal parabolic boundary-value problems,Lithuanian Mathem. J. ISSN 0363- 1672, 2008, 48(3), pp. 340–357.
18. M. Sapagovas, O. Štikonienė, A fourth-order alternating-direction method for difference schemes with nonlocal condition, Lithuanian Mathem. J. ISSN 0363-1672, 2009, 49(3), pp. 309–317.
19. F. Ivanauskas, T. Meškauskas, M. Sapagovas, Stability of difference schemes for two-dimensional parabolic equations with non-local boundary conditions, Appl. Math.Comp., 215(7), 2009, pp. 2716–2732.
20. J. Jachimavičienė, Ž. Jesevičiūtė, M. Sapagovas, The stability of finitedifference schemes for pseudo-parabolic equation with nonlocal conditions, Numer. Funct. Anal. Optim., 30(9), 2009, pp. 988–1001.
21. K. Jakubėlienė, R. Čiupaila, M. Sapagovas, Solution of a two-dimensional elliptic equation with a nonlocal condition, Proceedings of International Conference Differential Equations and their applications (DETA-2009), Ed. V. Kleiza et al., Kaunas.
22. M.Sapagovas , O.Štikonienė , Alternating-direction method for a mildly nonlinear elliptic equation with nonlocal integral conditions, Nonlin. Anal. Model. Contr.   16(2), pp. 220-230, 2011. 
23. M.Sapagovas , A.Štikonas, O.Štikonienė,  Alternating direction method for the Poisson equation with variable coefficients in an integral condition, Differ. Equ. 47(8), pp.1176-1187, 2011.
24. M.Sapagovas, K.Jakubelienė, Alternating direction method for two-dimensional parabolic equation with nonlocal integral condition, Nonlin. Anal. Model. Contr. 17(1), pp. 91-98, 2012.
25. M. Sapagovas, T. Meškauskas, F. Ivanauskas, Numerical spectral analysis of a difference operator with non-local boundary conditions. Applied Math. Comput. 218(14), pp.7515-7527, 2012. 
26. J. Jachimavičienė,  M. Sapagovas , Locally one-dimensional difference scheme for a pseudo-parabolic equation with nonlocal conditions. Lithuan. Math. J. 52(1), pp. 53-61,2012.

MOKSLO STRAIPSNIAI
periodiniuose ir tęstiniuose mokslo leidiniuose, registruotuose kitose
tarptautinėse mokslinės informacijos duomenų bazėse

1. M. P. Sapagovas, Difference scheme for two-dimensional elliptic problem with an integral condition, Lithuanian Math. J., 23(3), pp. 155–159, 1983.
2. M. P. Sapagovas, Numerical methods for the solution of the equation of surface with prescribed mean curvature, Lithuanian Math. J., 23(3), pp. 160–166, 1983.
3. M. P. Sapagovas, The numerical method for the solution of the problem on the equilibrium of a drop of liquid, Comput. Math., Banach Center Publ. 13, PWN, Warsaw, pp. 45–59, 1984. (In Russian)
4. M. P. Sapagovas, The solution of nonlinear ordinary differential equation with integral condition, Lithuanian Math. J., 24(1), pp. 155–166, 1984. 5. K. Ragulskis, M. Sapagovas, R. Čiupaila, A. Jurkulevičius, Numerical experiment in stacionary problems of liquid-metal contacts, Vibrotechnika, 4(57), pp. 105–111, 1986. (In Russian)
6. M. P. Sapagovas, R. J. Čiegis, The numerical solution of some nonlocal problems, Lithuanian J. Math., 27(2), pp. 348-356, 1987.
7. M. P. Sapagovas, The solution of difference equations, arising from differential problem with integral condition, In: Comput. Process and Systems, G.I. Marchuk(Ed.), Moscow, Nauka, 6, pp. 245-253, 1988. (In Russian)
8. M. Sapagovas, V. Vileiniškis, The solution of two-dimensional neutron diffusion equation with delayed neutrons, Informatica, 12(2), pp. 337– 342, 2001.
9. M. P. Sapagovas, Hypothesis on the solvability of parabolic equations with nonlocal conditions, Nonlinear Analysis, Modell. Contr., 7(1), pp. 93-104, 2002.
10. R. Baronas, F. Ivanauskas, J. Kulys, M. Sapagovas, Computional modeling of a sensor based on an array of enzime microreactors, Nonlinear Analysis: Modelling and Control, ISSN 1392-5113, Vilnius, IMI, 2004, 9(3), pp. 203–218.(Inspec)
11. R. Čiupaila, Ž. Jecevičiūtė, M. Sapagovas, On the eigenvalue problem for one-dimensional differential operator with nonlocal integral condition, Nonlinear Analysis: Modell. Contr., 9(2), pp. 109–116, 2004.
12. R. Čiupaila, M. Sapagovas, Nonlocal problem for the system of nonlinear differential equations with separated boundary conditions, Mathematical Modelling and Analysis, Proceedings 10th Intern. Conf. MMA 2005& CMAM2, Trakai, pp. 193–197, 2005.
13. A. Bastys, F. Ivanauskas, M. Sapagovas, An explicit solution of a parabolic equation with nonlocal boundary conditions, Lithuanian Math. J., 45(3), pp. 257–271, 2005.
14. B. I. Bandyrskii, I. Lazurchak, V. L. Makarov, M. Sapagovas, Eigenvalue problem for the second order differential equation with nonlocal conditions, Nonlinear Analysis, Model. Contr., 11(1), pp. 13–32, 2006.
15. Ž. Jecevičiūtė, M. Sapagovas, On the stability of finite-difference schemes for parabolic equations subject to integral conditions with applications to thermoelasticity, Comput. Methods Appl. Math., 8(4), pp. 360–373, 2008.
16. S. Sajavičius, M. Sapagovas, Numerical analysis of the eigenvalue problem for one-dimensional differential operator with nonlocal integral condition, Nonlinear Anal., Model. Contr., 14(1), pp. 115–122, 2009.

MOKSLO STRAIPSNIAI
kituose recenzuojamuose mokslo leidiniuose

1. T. Veidaitė, P. Kruteev, M. Sapagovas, A. Jurkulnevičius, The method of solution for differential equation of drop surface, Lithuanian J. Math.,17(3), pp. 168–169, 1977.(In Russian)
2. M. P. Sapagovas, The determination of free surface of the drop by finite elements method, Variacion. Raznostn. Metody v Matem. Fiz. Ed. G.I. Marchuk, Novosibirsk, pp. 117–128, 1978. (In Russian)
3. M. P. Sapagovas, The alternately-triangular method for the solving of the problems with nonlinear or nonselfadjoined operator, Different. Equat. and their Applic., 21, Vilnius, pp. 61–89, 1978 (In Russian).
4. M. P. Sapagovas, The difference method for the solution of the problem on the equilibrium of a drop of liquid, Different. Equat. and their Applic., 31, Vilnius, pp. 63–72, 1982. (In Russian)
5. V. Būda, M. Sapagovas, R. Čiegis, Two-dimensional model of nonlinear diffusion, Matem, i Mashinn. Metody v Mikroelektronike, Vilnius pp. 36–43, 1985. (In Russian)
6. V. Būda, R. Čiegis, M. Sapagovas, A model of multiple diffusion from a limited source, Diff. Equat, and their Applic., Vilnius,IMC, 38, pp. 9–14, 1986. (In Russian)
7. V. Būda, R. Čiegis, M. Sapagovas, Numerical investigation of nonlinear diffusion process in fabrication of integrated circuits, Mathem. Modell. Technol. Problems, Vilnius, Technika, pp. 39–47, 1995.
8. R. Čiegis, M. Sapagovas, R. Čiupaila, Numerical experiment in modeling of liquid-metal contacts, Mathem. Modell. Technol. Problems, Vilnius, Technika, pp. 57-70, 1995.
9. M.P. Sapagovas, On solvability of the finite difference schemes for a parabolic equations with nonlocal condition, J. Comput. Appl. Math., No 88, pp. 89–98, 2003.
10. F. Ivanauskas, R. Baronas, J. Kulys, M. Sapagovas, Fermento sluoksnio nelygumų amperometriniame biojutiklyje modeliavimas, Liet. Matem. Rink. ISSN 0132-2818, 2003, T. 43, spec.nr., pp. 625–629.
11. M. Sapagovas, A. Štikonas, O. Štikonienė, Čebyševo iteracinis metodas uždaviniui su nelokaliąja kraštine sąlyga, Liet. Matem. Rink., ISSN 0132-2818, 2004, 44(spec.nr.), pp. 665–669.
12. F. Ivanauskas, R. Baronas, J. Kulys, M. Sapagovas, Amperometrinių mikrobiojutiklių masyvo modeliavimas, Liet. Matem. Rink., ISSN 0132-2818, 2004, 44(spec.nr.), pp. 721–725.
13. M. P. Sapagovas, On stability of finite-difference schemes for one-dimensional parabolic equations subject to integral conditions, J. Comput. Appl. Math., No 92, pp. 70–90, 2005.
14. F. Ivanauskas, M. Sapagovas, Skaičiavimo matematika. Matematika Lietuvoje po 1945 metų,ISBN 9986-680-32-8, Vilnius, IMI, 2006, pp. 284–296.

VADOVĖLIAI AUKŠTOSIOMS MOKYKLOMS

1. B. Kvedaras, M. Sapagovas. Skaičiavimo metodai. Vilnius, „Mintis“, 1974, 516 psl.
2. M. Sapagovas. Diferencialinių lygčių kraštiniai uždaviniai su nelokaliosiomis sąlygomis, Vilnius, MII, 2007, 268 psl.

METODINĖS PRIEMONĖS

1. A. Štaras, M. Sapagovas, I. Uždavinys. Skaičiavimo metodų laboratoriniai darbai. Algebra ir analizė. Vilnius, VU, 1988, 104 psl.
2. A. Kregždė, M. Sapagovas. Tiesinės algebros skaitiniai metodai. Vilnius, VU, 1988, 84 psl.
3. V. Būda, M. Sapagovas. Skaitiniai metodai. Algoritmai, uždaviniai, projektai. Vilnius,„Technika“, 1998, 140 psl.