
Subject code ECTS credits

INF1007 6

Course title in Lithuanian

OBJEKTINIS PROGRAMAVIMAS

Course title in English

OBJECT ORIENTED PROGRAMMING

Short course annotation in Lithuanian (up to 500 characters)

Dalykas skirtas C++ objektinio programavimo priemonių parengimo ir naudojimo principų studijoms.

Studentai supažindinami su GITHUB repozitorija, rekursija, rodykle, simbolių eilučių, abstrakčių tipų

sąvokomis ir jų realizavimu bei panaudojimu. Suteikiami objektinio programavimo pagrindai, mokinama

formuoti objektinius programų modelius. Analizuojamos klasių aprašymo priemonės, klasių vidinės struktūros

paslėpimas, išorinės sąsajos aprašymo priemonės, savybių paveldėjimas klasių šeimose ir jų polimorfiškumas,

klasių kompozicijos, kritinių situacijų kontrolės bei šabloninio programavimo priemonės, susietų sąrašų

tvarkymo klasės.

Short course annotation in English (up to 500 characters)

Subject is suited to learn C++ programming language as object-oriented programming tools, and to get use it

in simple examples. Understands GitHub repositories. Students are introduced to recursion, pointers, string

data type, abstract data type, and concepts of their realization. Basics of object-oriented programming are

provided, developing of the object models and applications are introduced. Overview of classes, objects,

methods, descriptions for hiding the internal structure and external links are given. Characteristics of

inheritance, polymorphism, composition classes, critical situations control, planning of graphical user

interface, programming of it are explained.

Prerequisites for entering the course

Programming Fundamentals

Course aim

Understand of designing of advanced algorithms, get introduced to object oriented programming.

Links between course outcomes, criteria of learning achievement evaluation, study methods and

methods of learning achievement assessment

No Course outcomes
Criteria of learning

achievement evaluation
Study methods

Methods of learning

achievement

assessment

1.

Choose and apply

software to solve

practical problems.

Ability to distinguish the

programming languages and

compound technologies.

Reasonably understands

significance of exceptions and

influence for software

stability.

Practical works;

Giving inter-

pretations and

illustra- tions

through visual

material;

Reviewing

material;

Observations of

students presen- tations,

individual practical

activities.

Evaluation of semester

work, written reports,

classroom tests, written

mid-term and final

examinations.

2.

Understand GitHub

repositories

Understanding the GitHub

repositories.

Student demonstrates skills in

software developing flow,

systems and applying the tools.

Giving inter-

pretations and

illustra- tions

through visual

material.

Practical works.

Evaluation and analysis

of the practical works.

3.

Understanding

Practical benefits of

Recursion.

Knows development and

work-flow of recursion

algorithms.

Building a

problem set.

Practical works;

Observations of

students works,

presentations,

individual practical

activities.

Student presents the practical

works to lecture and their

colleagues.

Evaluation of semester

work, written reports,

classroom tests, written

mid-term examination.

4.

Applying the

Pointers.

Understand the meaning of

reference to the object, can

distinguish the storing of

variable and storing memory

address.

Student presents the practical

works to lecture and their

colleagues.

Building a

problem set.

Practical works;

Observations of

students works,

presentations,

individual practical

activities.

Evaluation of semester

work, written reports,

classroom tests, written

mid-term examination.

5.

Understand object-

oriented concepts.

Knows the keywords: class,

object, method, inheritance,

hierarchy.

Student presents the practical

works to lecture and their

colleagues.

Building a

problem set.

Practical works;

Observations of

students works,

presentations,

individual practical

activities.

Evaluation of semester

work, written reports,

classroom tests, written

final examination.

6.

Interchange of

objects with static

and dynamic data

fields.

Understanding and

distinguishing the methods of

storing data in computers’

memory.

Student presents the practical

works to lecture and their

colleagues.

Building a

problem set.

Practical works;

Observations of

students works,

presentations,

individual practical

activities.

Evaluation of semester

work, written reports,

classroom tests, written

final examination.

7.

Provide knowledge

on building of an

algorithm,

developing a

program, providing

an analysis of

working, or non-

working program.

Reasonably understands the

significance of exceptions and

influence for software

stability.

Student demonstrates skills in

developing systems and

applying the tools.

Student presents the practical

works to lecture and their

colleagues.

Building a

problem set.

Giving inter-

pretations and

illustrations

through visual

material;

Practical works;

Reviewing

material;

Evaluation of oral

presentation and

analysis of the practical

works.

Observations of

students works,

presentations,

individual practical

activities.

Evaluation of semester

work, written reports,

classroom tests, written

mid-term and final

examinations.

8.

Design and

developing of

Graphical user

interface

Understanding the

fundamentals of building and

GUI.

Student presents the practical

works to lecture and their

colleagues.

Building a

problem set.

Practical works;

Observations of

students works,

presentations,

individual practical

activities.

Evaluation of semester

work, written reports,

classroom tests,

9.

Choose and apply

suitable tools,

interpret the results.

The ability to use received

knowledge in other university

courses.

Student demonstrates skills in

developing systems and

applying the tools.

Giving inter-

pretations and

illustra- tions

through visual

material;

Reviewing

material;

Observations of

students presentations,

individual practical

activities.

Evaluation of oral

presentation and

analysis of the practical

works,

written reports,

classroom tests, written

mid-term and final

examinations.

Links between study programme outcomes and course outcomes

Study programme outcomes
Running number of course outcome

1 2 3 4 5 6 7 8 9

Know and comprehend the needs and importance of information

technologies in study process, also be able to apply programming

knowledge and skills, data structures and modelling

+ + + + + + + +

Identify the problem, collect and analyze real/theoretical data

using various mathematical methods, tools and IT technologies

+ + + + + +

Content

No Content (topics)

1. Differences of structured/functional and object oriented programming

2. Structure data type. Recursion. Pointers.

3. Object-oriented concept: Object-oriented programming: an Object, a Class,

EncapsulationPolymorphism, Inheritance, Multiinheritance. Construction. Destruction. Namespaces.

Virtual methods. Templates.

4. Abstract data type. Designing a General Class Structure.

5. Classes with the Dynamical data fields

6. Exception handling

7. GitHub

8. User interface, graphical user interface modelling

Distribution of workload for students (contact and independent work hours)

Practicum 75 hours

Individual students

work

 85 hours

Total: 160 hours

Structure of cumulative score and value of its constituent parts

Final written exam (50%), mid-term written exam (17%), and assessments of laboratory (practical) work

(33%).

Recommended reference materials

No

.

Publicatio

n year

Authors of

publicatio

n and title

Publishin

g house

Number of copies in

Universit

y library

Self-

study

room

s

Other libraries

Basic materials

1. 2016

V.Barzdaitis

„Objektinio

progra- mavimo

pagrindai“ -

Electronic papers, in distance learnig

system:

http://moodle.vdu.lt

http://moodle.vdu.lt/

distance

learning course

2. 2013

C++ Programm-

ing Language

OOP

https://www3.ntu.edu.sg/home/ehchu

a/

programming/cpp/cp3_OOP.html

3. 2008

A.Vidžiūnas

„C++ ir

objektinis

progra-

mavimas“

10 5

Supplementary materials

1 2016
Visual Studio Quick

Reference Guidance
SlideShare

Free resources on SlideShare:

https://vsarquickguide.codeplex.com

2 2016
Visual C++

Developer Center

Free resources on Internet:

https://msdn.microsoft.com/en-

us/vstudio/aa718325.aspx

3 2016

CPP programming

tutorials, best practice

examples, working

examples, debuging

instructions

http://www.bogotobogo.com/

cplusplus/cpptut.php

http://www.cplusplus.com

http://www.learncpp.com/

4

Free forums

resources: best news,

issues solving

solutions.

http://stackoverflow.com/questions/ 388242/

the-definitive-c-book-guide-and-list

https://www.quora.com/What-are-the-best-

C++-books

Course programme designed by

Lect. Vytautas Barzdaitis

https://vsarquickguide.codeplex.com/
https://msdn.microsoft.com/en-us/vstudio/aa718325.aspx
https://msdn.microsoft.com/en-us/vstudio/aa718325.aspx
http://www.bogotobogo.com/%20cplusplus/cpptut.php
http://www.bogotobogo.com/%20cplusplus/cpptut.php
http://www.cplusplus.com/
http://www.learncpp.com/
http://stackoverflow.com/questions/%20388242/the-definitive-c-book-guide-and-list
http://stackoverflow.com/questions/%20388242/the-definitive-c-book-guide-and-list
https://www.quora.com/What-are-the-best-C++-books
https://www.quora.com/What-are-the-best-C++-books

