Subject code	ECTS credits
INF1007	6

Course title in Lithuanian

OBJEKTINIS PROGRAMAVIMAS

Course title in English

OBJECT ORIENTED PROGRAMMING

Short course annotation in Lithuanian (up to 500 characters)

Dalykas skirtas C++ objektinio programavimo priemonių parengimo ir naudojimo principų studijoms. Studentai supažindinami su GITHUB repozitorija, rekursija, rodykle, simbolių eilučių, abstrakčių tipų sąvokomis ir jų realizavimu bei panaudojimu. Suteikiami objektinio programavimo pagrindai, mokinama formuoti objektinius programų modelius. Analizuojamos klasių aprašymo priemonės, klasių vidinės struktūros paslėpimas, išorinės sąsajos aprašymo priemonės, savybių paveldėjimas klasių šeimose ir jų polimorfiškumas, klasių kompozicijos, kritinių situacijų kontrolės bei šabloninio programavimo priemonės, susietų sąrašų tvarkymo klasės.

Short course annotation in English (up to 500 characters)

Subject is suited to learn C++ programming language as object-oriented programming tools, and to get use it in simple examples. Understands GitHub repositories. Students are introduced to recursion, pointers, string data type, abstract data type, and concepts of their realization. Basics of object-oriented programming are provided, developing of the object models and applications are introduced. Overview of classes, objects, methods, descriptions for hiding the internal structure and external links are given. Characteristics of inheritance, polymorphism, composition classes, critical situations control, planning of graphical user interface, programming of it are explained.

Prerequisites for entering the course

Programming Fundamentals

Course aim

Understand of designing of advanced algorithms, get introduced to object oriented programming.

Links between course outcomes, criteria of learning achievement evaluation, study methods and methods of learning achievement assessment

No	Course outcomes	Criteria of learning achievement evaluation	Study methods	Methods of learning achievement assessment
1.	Choose and apply software to solve practical problems.	Ability to distinguish the programming languages and compound technologies. Reasonably understands significance of exceptions and influence for software stability.	Practical works; Giving inter- pretations and illustra- tions through visual material; Reviewing material;	Observations of students presen- tations, individual practical activities. Evaluation of semester work, written reports, classroom tests, written mid-term and final examinations.
2.	Understand GitHub repositories	Understanding the GitHub repositories. Student demonstrates skills in software developing flow, systems and applying the tools.	Giving interpretations and illustra-tions through visual material. Practical works.	Evaluation and analysis of the practical works.
3.	Understanding Practical benefits of Recursion.	Knows development and work-flow of recursion algorithms.	Building a problem set. Practical works;	Observations of students works, presentations, individual practical activities.

4.	Applying the Pointers.	Student presents the practical works to lecture and their colleagues. Understand the meaning of reference to the object, can distinguish the storing of variable and storing memory address. Student presents the practical works to lecture and their	Building a problem set. Practical works;	Evaluation of semester work, written reports, classroom tests, written mid-term examination. Observations of students works, presentations, individual practical activities. Evaluation of semester work, written reports,
5.	Understand object- oriented concepts.	Knows the keywords: class, object, method, inheritance, hierarchy. Student presents the practical works to lecture and their colleagues.	Building a problem set. Practical works;	classroom tests, written mid-term examination. Observations of students works, presentations, individual practical activities. Evaluation of semester work, written reports, classroom tests, written final examination.
6.	Interchange of objects with static and dynamic data fields.	Understanding and distinguishing the methods of storing data in computers' memory. Student presents the practical works to lecture and their colleagues.	Building a problem set. Practical works;	Observations of students works, presentations, individual practical activities. Evaluation of semester work, written reports, classroom tests, written final examination.
7.	Provide knowledge on building of an algorithm, developing a program, providing an analysis of working, or non- working program.	Reasonably understands the significance of exceptions and influence for software stability. Student demonstrates skills in developing systems and applying the tools. Student presents the practical works to lecture and their colleagues.	Building a problem set. Giving interpretations and illustrations through visual material; Practical works; Reviewing material;	Evaluation of oral presentation and analysis of the practical works. Observations of students works, presentations, individual practical activities. Evaluation of semester work, written reports, classroom tests, written mid-term and final examinations.
8.	Design and developing of Graphical user interface	Understanding the fundamentals of building and GUI. Student presents the practical works to lecture and their colleagues.	Building a problem set. Practical works;	Observations of students works, presentations, individual practical activities. Evaluation of semester work, written reports, classroom tests,

	Choose and apply	The ability to use received	Giving inter-	Observations of
	suitable tools,	knowledge in other university	pretations and	students presentations,
	interpret the results.	courses.	illustra- tions	individual practical
	•	Student demonstrates skills in	through visual	activities.
		developing systems and	material;	Evaluation of oral
		applying the tools.		presentation and
9.			Reviewing	analysis of the practical
			material;	works,
				written reports,
				classroom tests, written
				mid-term and final
				examinations.

Links between study programme outcomes and course outcomes

C4-1	R	Running number of course outcome								
Study programme outcomes	1	2	3	4	5	6	7	8	9	
Know and comprehend the needs and importance of information technologies in study process, also be able to apply programming knowledge and skills, data structures and modelling	+	+	+	+	+	+	+		+	
Identify the problem, collect and analyze real/theoretical data using various mathematical methods, tools and IT technologies	+	+			+	+	+	+		

Content

No	Content (topics)
1.	Differences of structured/functional and object oriented programming
2.	Structure data type. Recursion. Pointers.
3.	Object-oriented concept: Object-oriented programming: an Object, a Class, EncapsulationPolymorphism, Inheritance, Multiinheritance. Construction. Destruction. Namespaces. Virtual methods. Templates.
4.	Abstract data type. Designing a General Class Structure.
5.	Classes with the Dynamical data fields
6.	Exception handling
7.	GitHub
8.	User interface, graphical user interface modelling

Distribution of workload for students (contact and independent work hours)

Practicum		75 hours	
Individual	students	85 hours	
work			
	Total:	160 hours	

Structure of cumulative score and value of its constituent parts

Final written exam (50%), mid-term written exam (17%), and assessments of laboratory (practical) work (33%).

Recommended reference materials

				Number of copies in				
No ·	Publicatio n year	Authors of publicatio n and title	Publishin g house	Universit y library	Self- study room s	Other libraries		
]	Basic materia	ls			
1.	2016	V.Barzdaitis "Objektinio progra- mavii pagrindai" -	mo			Electronic papers, in distance learnig system: http://moodle.vdu.lt		

		distance								
		learning course								
		C++ Programm-					https://www3.ntu.edu.sg/home/ehchu			
2.	2013	ing Language					a/			
		OOP					programming/cpp/cp3_OOP.html			
		A.Vidžiūnas								
		"C++ ir								
3.	2008	objektinis	10		5					
		progra-								
		mavimas"								
	T		Su	ppleme	ntary m					
1	2016	Visual Studio Quid	•		SlideShare		Free resources on SlideShare:			
1	2010	Reference Guidane	ce	Bilder	Jiiuic	https://vsarquickguide.codeplex.com				
		Visual C++				Free re	sources on Internet:			
2	2016	Developer Center				https://	msdn.microsoft.com/en-			
						us/vstu	<u>idio/aa718325.aspx</u>			
		CPP programming	5			http://w	vww.bogotobogo.com/			
		tutorials, best prac					lus/cpptut.php			
3	2016	examples, working					vww.cplusplus.com			
		examples, debugin	ıg				vww.learncpp.com/			
		instructions								
		Free forums				_	tackoverflow.com/questions/ 388242/			
4		resources: best nev	ws,				initive-c-book-guide-and-list			
		issues solving				_	www.quora.com/What-are-the-best-			
		solutions.				<u>C++-bo</u>	<u>ooks</u>			

Course programme designed by
Lect. Vytautas Barzdaitis