Subject code	ECTS credits
INF5007	6

Course title in Lithuanian NEURONINIAI TINKLAI

Course title in English

NEURAL NETWORKS

Short course annotation in Lithuanian (up to 500 characters)

Kurse nagrinėjami dirbtinių ir biologinių neuronų tinklų sudarymo, analizės ir taikymo principai: dirbtinių neuroninių tinklų taikymas klasifikavimo ir prognozavimo uždaviniams spręsti, asociatyvinės ir autoasociatyvinės atmintys; prognozavimo ir klasifikavimo tikslumo rodikliai ir jų įvertinimas, duomenų paruošimas; neuroinformatika ir biologinių neuronų bei jų formuojamų tinklų modeliavimo principai; neuroninių sistemų pritaikymas robotikoje.

Short course annotation in English (up to 500 characters)

The goal of this course is to introduce the students with theory and application of artificial and biological neural networks: artificial neural networks for classification and prediction, associative and autoassociative memories, accuracy estimation in classification and prediction, feature selection and extraction; neuroinformatics and biologically realistic neural networks; application of neural systems in robotics.

Prerequisites for entering the course

Probability Theory, Mathematical Statistics, Algebra

Course aim

Course aim is to provide knowledge of artificial neural network theory and theoretical neuroscience, develop students' skills in applying artificial neural networks in real-world tasks.

Links between study programme outcomes, course outcomes, criteria of learning achievement evaluation, study methods and methods of learning achievement assessment

Course outcomes	Criteria of learning achievement evaluation	Study methods	Methods of learning achievement assessment
1. Knowledge and understanding of neural networks in prediction, pattern recognition, robot control tasks	Student demonstrates the knowledge and understanding of neural networks by solving the tasks and providing a theoretical background	Lectures, practical works, individual work	Mid-term exam
2. Ability to use neural networks in prediction, pattern recognition, robot control tasks and to interpret the results; ability to select an appropriate neural network; ability to estimate the performance of the neural system.	Student demonstrates the ability to apply neural networks in prediction, pattern recognition, robot control tasks for the teacher supplied problem using MATLAB or other programming language	Lectures, practical works, individual work	Mid-term exam
3. Ability to extract meaningful parameters for neural network applications and solve real-world tasks.	Student shows ability to select appropriated feature selections and extraction algorithms for classification and prediction given real-world problems.	Lectures, practical works, individual work	Exam
4. Identify developed model problems and solve them	Student demonstrates the ability to identify problems of neural methods and find problems solution methods	Lectures, practical works, individual work	Exam

5. Understand principles of modelling biologically realistic neural systems and links between artificial and biologically realistic neural	Student demonstrates ability to define the main principles of modelling biologically realistic neural networks and compare the advantages and limitations of	Lectures, practical works, individual work	Essay presentations
networks.	artificial and biologically realistic neural networks		
6. Present report of performed study	Student formulates a task, presents solution, formulates conclusions	Individual work, self-study of literature, discussions, consulting	Essay presentations

Links between study programme outcomes and course outcomes

Study programme outcomes		Running number of course outcome					
Study programme outcomes	1	2	3	4	5	6	
4. Identify, select and understand the state-of-the-art literature of mathematics and apply the gained knowledge to specific	+	+		+			
scientific and practical tasks							
5. Develop mathematical models integrating the knowledge from various fields and different mathematical modelling techniques, and analyse the modelling results assessing the model adequacy and accuracy	+	+	+	+	+		
11. Convey mathematical information to specialists of different fields orally and/or in written form, critically evaluate it					+	+	
13. Take moral responsibility for the results of work						+	

Content

Conte	11 <i>t</i>			
No.		Content (topics)		
1.	Neuroinformatics.	Neuroinformatics.		
2.	Neural networks in biological systems.			
3.	Unsupervised learning. Hebb	's learning rule. Associative and autoassociative memory.		
4.	Supervised learning. Single-la	ayer perceptron.		
5.	Multi-layer perceptron. Back	propagation learning.		
6.	Overtraining. Performance ac	curacy evaluation.		
7.	Feature extraction and selecti	on.		
8.	Radial Basis Neural networks	Radial Basis Neural networks.		
9.	Learning Vector Quantization.			
10.	Support vector machines.			
11.	Reinforcement learning. Police	cy gradient learning. Neuronal robot control		
12.	Presentation of project results			
Distri	bution of workload for stude	nts (contact and independent work hours)		
Lectu	ures	30 hours		
Semi	Seminars and laboratory work 30 hours			
Indiv	Individual students work 100 hours			
	Total:	160 hours		
Struct	ture of cumulative score and	value of its constituent parts		

Final written exam (50%), mid-term written exam (17%), and assessments of homework work (33%). **Recommended reference materials**

No.	Publication	Authors of publication	Publishing	Number of copies in		Other	
110.		Authors of publication and title	house	University	Self-study	Other	
	year	and the	nouse	library	rooms	libraries	
	Basic materials						
1	1. 1994	S. Haykin. Neural	IEEE	1			
1.		Networks: A	Press/Macmillan	1			

		Comprehensive	College			
		Foundation.	Publishing			
			Company, New			
			York,			
		Š. Raudys. Statistical and				
2.	2001	Neural Classifiers: An	Carlagen I ander	1		
۷.	2001	integrated approach to	Springer, London	1		
		design				
		M.T.Hagan,				
		H.W.Demuth. Neural		eBook eBo		k eBook
3.	2014	Network Design.			eBook	
		http://hagan.okstate.edu/				
		NNDesign.pdf				
		Supple	ementary materials			
		Koch, C. Biophysics of	Oxford			
1	1999	Computation:	University Press:	1		
1.		Information Processing	New York, New			
		in Single Neurons	York,			
Cours	se programm	e designed by				
Prof	Dr. Minija T	amošiūnaitė, Assoc. Prof. Dr	: Aušra Saudargienė			