Subject code	ECTS credits		
MAT2006	6		

Course title in Lithuanian

MATEMATINĖ ANALIZĖ 4

Course title in English

MATHEMATICAL ANALYSIS 4

Short course annotation in Lithuanian (up to 500 characters)

Šio kurso tikslas yra suteikti studentams teorinių ir praktinių žinių apie įvairių tipų integralus, Furjė eilutes ir integralus. Kursas suteiks pagrindines žinias apie kreivinius ir paviršinius integralus, tiesioginius ir netiesioginius integralus, priklausančius nuo parametro, Oilerio integralus, Furjė eilutes ir integralus.

Short course annotation in English (up to 500 characters)

The main objectives of the course are to present basics of various types of integrals, Fourier series and integral. Teaching methods are lectures and practical works. The main topics cover: line integral, surface integral, integrals of a function depending on a parameter, improper integrals as functions of a parameter. Euler's gamma and beta integral, Fourier series integral.

Prerequisites for entering the course

methods of learning achievement assessment

Mathematical Analysis 1, Mathematical Analysis 2, Mathematical Analysis 3

Course aim

Course aim is to provide understanding of various types of integrals and their properties, Fourier series. Links between course outcomes, criteria of learning achievement evaluation, study methods and

No	Course outcomes	Criteria of learning achievement evaluation	Study method	s Methods of learning achievement assessment
1	Knowledge and	Student demonstrates the ability	Lectures,	Mid-term exam,
	understanding of the line and surface integrals	to is able to solve given line and surface integrals	practical works individual work consulting	, Assessment of c, practical works
2	Knowledge and understanding of the derivatives of an integral with respect to the parameter	Student demonstrates the ability to solve simplest computational problems related derivatives of an integral with respect to the parameter	Lectures, practical works individual work consulting	Mid-term exam, Assessment of c, practical works
3	Knowledge and understanding of integration of an integral with respect to the parameter	Student demonstrates the ability to integrate simplest integrals with respect to the parameter	Lectures, practical works individual work consulting	, Mid-term exam, , Assessment of , practical works
4	Knowledge and understanding of Fourier series and Fourier integrals	Student demonstrates the ability to solve simplest computational problems related to Fourier series and Fourier integrals	Lectures, practical works individual work consulting	Final exam, assessment of practical works
5	Knowledge of propositions and proofs of this course	Student knows main propositions of this course and can to proof them	Lectures, practical works individual work consulting	Final exam, assessment of practical works
Links	between study programme	outcomes and course outcomes		
	Study	Running number of course outcome		

	1	2	3	4	5
Know and comprehend concepts and propositions of fundamental mathematical				-	
subjects, recognize and apply them solving practical/theoretical tasks		+	+	+	+
Identify the problem, collect and analyze real/theoretical data using various					
mathematical methods, tools and IT technologies	+				
Operating with formal mathematical symbols and terms, determine mathematical					
connections between various mathematical quantities; conceive mathematical		+	+	+	+
propositions and logical proofs, construct and prove new statements					
Think logically and analytically, evaluate alternative ways of task solving and					
implement optimal solutions			+	+	+
Content					

Conten					
No	Content (topics)				
1.	Line integrals.				
2.	Green's formula.				
3.	Surface integrals.				
4.	Integrals of a function depending on a parameter.				
5.	Differentiability of an integral with respect to the parameter.				
6.	Improper integrals as functions of a parameter.				
7.	Differentiation of improper integrals with respect to a parameter.				
8.	Integration of improper integrals with respect to a parameter.				
9.	Euler's gamma integral.				
10.	Euler's beta integral.				
11.	Fourier series.				
12.	Fourier integral.				

Distribution of workload for students (contact and independent work hours)				
Lectures	45 hours			
Practical work	30 hours			
Individual students work	85 hours			

Structure of cumulative score and value of its constituent parts

Total: 160 hours

Final written exam (50%), mid-term written exam (25%), assessment of practical work (25%).

Recommended reference materials

No	Dublicatio	Authors of publication and title	Publishing house	Number of copies in					
INU	n year			University library	Self study rooms	Other libraries			
	Basic materials								
1	1998	Misevičius E. Matematinė analizė. I (Mathematical Analysis)	Vilnius, TEV	30	2				
2	2001	Misevičius E. Matematinė analizė. II (Mathematical Analysis)	VU leidykla	34	2				
3	1996	Pekarskas V. Diferencialinis ir integralinis skaičiavimas. I (Differential and Integral Calculus I)	Kaunas, Technologi ja	25	6				

4	2000	Pekarskas V. Diferencialinis ir integralinis skaičiavimas. II (Differential and Integral Calculus II)	Kaunas, Technologi ja	22	6	
		5	Supplementary	materials		
1	2007	Misevičius E. Matematinė analizės uždavinynas. I (Tasks for Mathematical Analysis I)	VU leidykla			
2	2009	Misevičius E. Matematinė analizės uždavinynas. II (Tasks for Mathematical Analysis II)	VU leidykla			
Course programme designed by						
Prof. dr. Ričardas Krikštolaitis						