Subject code	ECTS credits
MAT2007	6

Course title in Lithuanian

SKAIČIŲ TEORIJA

Course title in English

NUMBER THEORY

Short course annotation in Lithuanian (up to 500 characters)

Įgyjamos klasikinės skaičių teorijos žinios bei formuojami jų taikymo įgūdžiai. Studentas tai padarys studijuojamas sveikųjų skaičių dalumo teoriją (skaičiavimo sistemos, bendrasis didžiausiasis daliklis ir bendrasis mažiausiasis kartotinis, pirminiai skaičiai, aritmetinės funkcijos, grandininės trupmenos) ir lyginių teoriją (Oilerio funkcija, likinių sistemos, Oilerio ir Ferma teoremos, lyginiai su nežinomaisiais, laipsniniai likiniai).

Short course annotation in English (up to 500 characters)

Acquire knowledge of classical number theory, and form the skills of them application. Students will study the theory of numbers divisibility (numerical systems, greatest common divisor, least common multiple, prime numbers, arithmetical functions, continued fractions) and the congruence theory (Euler totient function, residue systems, Euler and Fermat theorems, congruence with unknowns, power residues systems).

Prerequisites for entering the course

High school mathematics knowledge.

Course aim

Main aim of the course is to provide the students with theoretical and practical knowledge and skills of classical number theory.

Links between course outcomes, criteria of learning achievement evaluation, study methods and methods of learning achievement assessment

1.Knowledge and understanding of main concepts of classical number theory.Student demonstrates the ability to illustrate main concepts with examples.Lecture, exercise classes, individual work, literature analysis, tutorialsMidterm, Test2.Provide knowledge to choose appropriate method for solution of practical task.Student recognizes the type of congruences and solves them choosing the optimal method (GCD, continued fractions, etc.).Lecture, exercise classes, individual work, practical exercises (tasks), tutorialsExam, Test3.Knowledge and ability to identify one-to-one connections between arithmetical functions.Understanding main point of task, student recognizes certain arithmetical function (-s) and applies them to solve practical exercise.Lecture, exercise classes, individual work, literature analysis, tutorialsTest4.Perform the ability to formulate and prove the propositions of classical number theory.Operating on basic terms and propositions, student proves statements on divisibility of numbers, cases for solution of congruences and etc.Lecture, exercise classes, individual work, literature analysis, tutorialsTest, Midterm, Exam	No	Course outcomes	Criteria of learning achievement evaluation	Study methods	Methods of learning achievement assessment
2.Provide knowledge to choose appropriate method for solution of practical task.Student recognizes the type of congruences and solves them choosing the optimal method (GCD, continued fractions, etc.).Lecture, exercise classes, individual work, practical 	1.	Knowledge and understanding of main concepts of classical number theory.	Student demonstrates the ability to illustrate main concepts with examples.	Lecture, exercise classes, individual work, literature analysis, tutorials	Midterm, Test
3.Knowledge and ability to identify one-to-one connections between arithmetical functions.Understanding main point of task, student recognizes certain arithmetical function (-s) and applies them to solve practical exercise.Lecture, individual work, literature analysis, practical exercises (tasks), tutorialsTest4.Perform the ability to formulate and prove the propositions of classical number theory.Operating on basic terms and propositions, student proves statements on divisibility of numbers, cases for solution of congruences and etc.Lecture, individual 	2.	Provide knowledge to choose appropriate method for solution of practical task.	Student recognizes the type of congruences and solves them choosing the optimal method (GCD, continued fractions, etc.).	Lecture, exercise classes, individual work, practical exercises (tasks), tutorials	Exam, Test
4.Perform the ability to formulate and prove the propositions of classical number theory.Operating on basic terms and propositions, student proves statements on divisibility of numbers, cases for solution of congruences and etc.Lecture, exercise classes, individual work, literature analysis, tutorialsTest, Midterm, Exam	3.	Knowledge and ability to identify one-to-one connections between arithmetical functions.	Understanding main point of task, student recognizes certain arithmetical function (-s) and applies them to solve practical exercise.	Lecture, individual work, literature analysis, practical exercises (tasks), tutorials	Test
	4.	Perform the ability to formulate and prove the propositions of classical number theory.	Operating on basic terms and propositions, student proves statements on divisibility of numbers, cases for solution of congruences and etc.	Lecture, exercise classes, individual work, literature analysis, tutorials	Test, Midterm, Exam
Links between study programme outcomes and course outcomes	Links	between study programme	outcomes and course outcome	S	

Study programme outcomes	Running number of course outcome			
	1	2	3	4

Know and comprehend concepts and propositions of				
fundamental mathematical subjects, recognize and apply them	+	+		+
solving practical/theoretical tasks				
Identify the problem, collect and analyze real/theoretical data				
using various mathematical methods, tools and IT technologies		+	+	
Operating with formal mathematical symbols and terms,				
determine mathematical connections between various				
mathematical quantities; conceive mathematical propositions	+		+	+
and logical proofs, construct and prove new statements				
Think logically and analytically, evaluate alternative ways of				_
task solving and implement optimal solutions	+		+	

Content

No		Content (topics)	
1.	Divisibility of intege	r numbers.	
	1.1. Main term	as and theorems. Properties of divisibility.	
	1.2. Numerical	l systems.	
	1.3. Greatest c	ommon divisor.	
	1.4. Least com	mon multiple.	
	1.5. Prime and	composite numbers. Coprime numbers.	
	1.6. Factorizat	ion into primes.	
	1.7. Continued	fractions.	
2.	Main functions in nu	mber theory.	
	2.1. Integer an	d fractional part of number.	
	2.2. Arithmetic	cal and multiplicative functions.	
	2.3. Number at	nd sum of divisors.	
	2.4. Möbius fu	nction.	
	2.5. Euler totie	ent function.	
3.	Congruences.		
	3.1. Definition	and properties of congruence.	
	3.2. Modular a	rithmetic.	
	3.3. Residue. H	Ring of residues.	
	3.4. Systems o	f residues.	
	3.5. Euler and	Fermat theorems.	
4.	One variable congrue	ences.	
	4.1. Main term	18.	
	4.2. Linear cor	ngruences.	
	4.3. Solution of	f algebraic congruences.	
	4.4. Systems o	f linear congruences.	
	4.5. Congruen	ces with prime power modulus.	
	4.6. Congruen	ces with composite modulus.	
	4.7. Diophanti	ne equations.	
5.	Higher order residue	S.	
	5.1. Index.		
	5.2. Primitive	roots.	
	5.3. System fra	actions.	
	5.4. Length of	period.	
6.	Application of numb	er theory in other sciences.	
Distribution of workload for students (contact and independent work hours)			
Lectur	es	45 hours	
Practic	cal work	30 hours	
Individ	lual students work	85 hours	

 Total:
 160 hours

 Structure of cumulative score and value of its constituent parts

Mid-term exam (25 %), Evaluation of practical work (25 %: two tests by 12.5 %), Final exam (50%). Recommended reference materials

No	D-11-4	Authors of	D1-12-1-1	Number of copies in			
NO	Publicatio n year	publication and title	Publishing	University Self-study			
			nouse	library	rooms	Other libraries	
			Basic m	aterials			
		K. Bulota,					
1	1000	P. Survila.	Vilnius:	11	2		
1.	1990	Algebra ir skaičių	Mokslas	11	2		
		teorija 2.					
		R. Skrabutėnas,	Vilnius:				
		P. Survila.	Mokslo ir				
2.	1995	Algebros ir	enciklope-	3	2		
		skaičių teorijos	dijų				
		uždavinynas.	leidykla				
		Kenneth H.					
		Rosen.					
3	2004	Elementary	Addison-		1		
		Number Theory:	Wesley		1		
		and Its					
		Applications.					
		~	Supplementa	iry materials			
	2001	J.K. Strayer.	Waveland				
1.		Elementary	Pr Inc.				
		Number Theory					
		W.A. Coppel.	a .				
2.	2006	Number Theory:	Springer				
		An Introduction to	Verlag				
		Mathematics					
,	2012	Ab. Kumar.		https://ocw.mi	it.edu/courses/ma	athematics/18-781-	
5.		I neory of		theory-of-numbers-spring-2012/lecture-notes/			
		Numbers		-			
1	2019	P.J. Cameron.		1 //	othe energies1-/	nio/notos/nt n 1f	
+.		A Course on		nttp://www.m	aus.qmul.ac.uk/	~pjc/notes/nt.pdf	
		number Theory					
ours	e programme	e designed by					

Prof. dr. Roma Kačinskaitė