| Subject code | ECTS credits | |--------------|--------------| | MAT 3004 | 6 | #### Course title in Lithuanian ### SKAITINIAI METODAI IR OPTIMIZAVIMAS ### Course title in English ## NUMERICAL METHODS AND OPTIMIZATION ### Short course annotation in Lithuanian (up to 500 characters) Funkcijų interpoliavimas algebriniais daugianariais, Lagranžo ir Niutono interpoliacinės formulės, interpoliavimo paklaida. Interpoliavimas splainais. Kubinio interpoliacinio splaino radimo formulės, interpoliavimo paklaida. Apytikslės integravimo formulės: stačiakampių, trapecijų, Simpsono, aposteriorinis paklaidos įvertis, adaptyvinės skaitinio integravimo formulės. Netiesinės lygties sprendimas. Niutono metodas ir jo modifikacijos, sprendinio paklaidos įvertis. Iteraciniai metodai tiesinių algebrinių lygčių sistemoms spręsti. Jakobio, Zeidelio, paprastosios iteracijos, relaksacijos ir neišreikštiniai iteraciniai metodai. Matricos tikrinių reikšmių ir tikrinių vektorių radimo metodai, laipsnių metodas ir jo modifikacijos, atvirkštinės iteracijos metodas. Vieno ir kelių kintamųjų funkcijos optimizavimo metodai ## Short course annotation in English (up to 500 characters) This course aims to develop understanding in numerical methods and optimization. The content includes: Functions interpolation. Cubic spline. Numerical integration. Solving of nonlinear equation and system of linear algebraic equations. Algebraic eigenvalue problem. Teaching methods are lectures and practical works. ### **Prerequisites for entering the course** Mathematical Analysis, Algebra #### Course aim Course aim is to provide understanding of Numerical Methods and Optimization. Links between course outcomes, criteria of learning achievement evaluation, study methods and methods of learning achievement assessment | No | Course outcomes | Criteria of learning achievement evaluation | Study
methods | Methods of
learning
achievement
assessment | |----|---|---|---|---| | 1 | Knowledge and understanding to solve the practical problem by spline interpolation | Student is able to solve problem using spline interpolation. | Lectures,
practical
works,
individual
work,
consulting | Mid-term exam,
Assessment of
practical works | | 2 | Understanding the methods to evaluate the error of numerical integration | Student demonstrates the ability to evaluate the error of numerical integration. | Lectures,
practical
works,
individual
work,
consulting | Mid-term exam,
Assessment of
practical works | | 3 | Provide knowledge of use
the basic methods for
determination of roots of
nonlinear functions | Student is able to determine roots of nonlinear functions. | Lectures,
practical
works,
individual
work,
consulting | Mid-term exam,
Assessment of
practical works | | 4 | Understanding the methods
to solve the system of linear
algebraic equatons | Student is able to solve system of linear algebraic equation using different methods. | Lectures,
practical
works,
individual | Mid-term exam,
Assessment of
practical works | | | | | work,
consulting | | |----|---|--|---|--| | 5. | Understanding the methods
to determine approximately
the eigenvalues and
egenvectors of matrices | Student can determine eigenvalues and eigenvectors of matrices | Lectures,
practical
works,
individual
work,
consulting | Mid-term exam,
Assessment of
practical works | | 6. | Understanding the choose of the methods for minimization of functions | Student is able to choose proper methods for minimization of functions | Lectures,
practical
works,
individual
work | Final exam,
assessment of
practical works | Links between study programme outcomes and course outcomes | Study programme outcomes | Running number of course outcome | | | | | | |--|----------------------------------|---|---|---|---|---| | | 1 | 2 | 3 | 4 | 5 | 6 | | Know and comprehend concepts and propositions of fundamental mathematical subjects, recognize and apply them solving practical/theoretical tasks | + | + | + | + | + | + | | Comprehend and be able to apply classical analytical and numerical methods as well as the main algorithms for solving differential equations | + | + | | | | + | | Identify the problem, collect and analyze real/theoretical data using various mathematical methods, tools and IT technologies | | + | + | + | + | | | Think logically and analytically, evaluate alternative ways of task solving and implement optimal solutions | + | + | + | + | + | + | # **Content** | No | Content (topics) | | | | | |----|---|--|--|--|--| | 1. | Interpolation of functions, spline interpolation. | | | | | | 2. | Numerical integration. | | | | | | 3. | Solution of nonlinear equation, Newton method and its modifications. | | | | | | 4. | Solution of the system of linear algebraic equations, Gauss-Seidel and Cholesky methods, iterative methods. | | | | | | 5. | Algebraic eigenvalue problem, power and inverse iteration methods. | | | | | | 6. | Methods of minimization of functions. | | | | | Distribution of workload for students (contact and independent work hours) | Lectures | 45 hours | |--------------------------|-----------| | Practical work | 30 hours | | Individual students work | 85 hours | | Total: | 160 hours | # Structure of cumulative score and value of its constituent parts Final assessment sums the assessments of written final examination (50%), written mid-term examination (25%) and assessment of practical works (25%). # **Recommended reference materials** | No | Dublicatio | Authors of | Dublishins | Number of copies in | | | |-----------------|----------------------|-----------------------|---------------------|------------------------------|--|-----------------| | NO | Publicatio
n year | publication and title | Publishing
house | S I/niversity Self-study | | Other libraries | | Basic materials | | | | | | | | 1. | 1997 | Čiegis R., Būda V.
Skaičiuojamoji
matematika | Vilnius ,
TEV | 15 | 3 | | |----|------|--|-----------------------|----|---|--| | 2. | 1992 | Buchanan J.L.,
Turner P.R.
Numerical Methods
and Analysis | McGraw-
Hill Itern | | 1 | | | 3. | 2005 | Sapagovas M.
Skaitiniai metodai | Kaunas,
VDU | | 1 | Free access in VMU
Moodle system for
students of this study
subject | Course programme designed by Prof. habil. dr. Vytautas Kleiza