Subject code	ECTS credits
MAT 3009	6

Course title in Lithuanian

MATRICŲ TEORIJA

Course title in English

MATRIX THEORY

Short course annotation in Lithuanian (up to 500 characters)

Paprastos struktūros matricos diagonalizavimo metodai. Normaliosios, Ermito, simetrinės, ortogonaliosios, teigiamai apibrėžtos, Jakobio matricos. Žordano forma. Matricų funkcijos. Polinomų matricos. Bitiesinės formos. Neneigiamosios ir tikimybinės matricos. Matricų teorijos taikymai matematikoje ir ekonomikoje.

Short course annotation in English (up to 500 characters)

This course aims to develop understanding in matrix theory. The content includes: transformations to diagonal matrix; types of matrices; Jordan form; matrix functions; bilinear structures; probabilistic matrices; matrix theory applications in mathematics and economics.

Prerequisites for entering the course

Algebra. Geometry.

Course aim

Course aim is to provide students with main theoretical and practical knowledge and skills of matrix theory. Links between course outcomes, criteria of learning achievement evaluation, study methods and methods of learning achievement assessment

No	Course outcomes	Criteria of learning achievement evaluation	Study methods		:	Methods of learning achievement assessment		
1	Provide knowledge to	Student recognizes advanced	Lectures	,	Mie	Mid-term exam,		
	recognize advanced types of	types of matrices and can	practical	l works,	ass	assessment of		
	matrices and to operate with	perform operations with	individu	al work,	pra	ctical v	vorks	
	them	them.	consulti	ng				
2	Knowledge and understanding	Student recognizes and	Lectures	,	Mie	Mid-term exam,		
	of matrices of polynomials	explains matrices of	practical	l works,	ass	essmen	t of	
	and their properties	polynomials and main their	individu	al work,	pra	ctical v	vorks	
		properties.	consulti	ng				
3	Knowledge and understanding	Student recognizes main	Lectures	,	Fin	al exan	n,	
	of nonnegative matrices	properties of nonnegative	practical	works,	ass	essmen	t of	
		matrices.	individu	al work,	pra	ctical v	vorks	
			consulti	ng				
4	Applications of matrix theory	Student is able to apply terms	Lectures	,	Fin	al exan	n,	
	in economics and other areas	and propositions of matrix	practical works,		ass	essmen	t of	
		theory in mathematics,	individu	pra	ctical v	vorks		
		economics and other areas.	consulting					
5	Perform the ability to	Operating on terms and	Lectures,		Mi	Mid-term exam,		
	formulate and prove the	propositions, student proves	Literature		fina	final exam		
	propositions of matrix theory	statements of matrix theory.	analysis,					
			individual work,					
			consulti	ng				
Link	s between study programme ou	tcomes and course outcomes					1	
					umber	of cou	rse	
	Study programme outcomes				itcome			
	0		1	2	3	4	5	

Know and comprehend concepts and propositions of fundamental mathematical subjects, recognize and apply them solving practical/theoretical tasks	+	+	+		
Identify the problem, collect and analyze real/theoretical data using various mathematical methods, tools and IT technologies				+	+
Operating with formal mathematical symbols and terms, determine mathematical connections between various mathematical quantities; conceive mathematical propositions and logical proofs, construct and prove new statements	+	+	+		+
Think logically and analytically, evaluate alternative ways of task solving and implement optimal solutions				+	+

Content

No	Content (topics)
1.	Normal matrices.
2.	Hermitian and symmetrical matrices.
3.	Orthogonal matrices.
4.	Positive-definite matrices.
5.	Jacobi matrices.
6.	Jordan form.
7.	Matrix functions. Matrices of polynomials.
8.	Bilinear forms.
9.	Nonnegative matrices. Probabilistic matrices.
10.	Matrix theory applications in mathematics and economics.

Distribution of workload for students (contact and independent work hours)

Lectures	45 hours
Practical work	30 hours
Individual students work	85 hours
Total:	160 hours

Structure of cumulative score and value of its constituent parts

Final written exam (50%), mid-term written exam (25%), assessment of practical work (25%).

Recommended reference materials

No	Dublication	Authors of	Dubliching	Number of copies in				
INU	year	publication and title	house	University library	Self study rooms	Other libraries		
	Basic materials							
1.	2000	Kvedaras B. Matricų teorija. II d. (Matrix Theory II)	Vilnius: MII	29	2			
2.	1999	Kvedaras B. Matricų teorija. I d. (Matrix Theory I)	Kaunas: VDU	29	2			
3.	2013	Zhan X. Matrix Theory	American Mathemati cal Society	0	1			
	-		Supplementa	ry materials				
1.	1984	Markauskas R. Tiesinės algebros uždavinynas: tiesinės erdvės ir kvadratinės formos. (Tasks for Linear	Vilnius					

Algebra: Linear Spaces and				
Quadratic Forms)				
Course programme designed by				
Dr. Živilė Jokšienė				

Dr. Živilė Jokšienė