Subject code	ECTS credits
MAT3016	6

Course title in Lithuanian

OPTIMIZAVIMO METODAI

Course title in English

OPTIMIZATION METHODS

Short course annotation in Lithuanian (up to 500 characters)

Įgyjamos esminės optimizavimo metodų žinios, susipažįstama su pagrindiniais optimizavimo uždavinių tipais, tiesinio programavimo uždaviniais ir jų sprendimo metodais, dualiaisiais uždaviniais, transporto uždaviniais, tinklų uždaviniais, daugiakriteriniu optimizavimu, netiesiniu programavimu.

Short course annotation in English (up to 500 characters)

Acquired knowledge of basic concepts of optimization theory: main types of optimization problems. Solution methods of linear optimization problems: graphical solution method, Simplex method. Dual problems. Transportation problem. Network models. Multicriteria optimization. Nonlinear programming.

Prerequisites for entering the course

Mathematical Analysis, Algebra, Discrete Mathematics

Course aim

Course aim is to provide knowledge of basic concepts of optimization theory.

Links between course outcomes, criteria of learning achievement evaluation, study methods and methods of learning achievement assessment

No	Course outcomes	Criteria of learning achievement evaluation	Study methods	Methods of learning achievement assessment
1	Knowledge and understanding of linear programming problems.	Student demonstrates the ability to identify and solve linear programming problems.	Lectures, practical works, individual work, group work, consulting	Mid-term exam, assessment of practical works
2	Understanding the relationship between a linear programming problem and its dual.	Student demonstrates the ability to formulate and solve dual problem.	Lectures, practical works, individual work, consulting	Mid-term exam, assessment of practical works
3	Knowledge and understanding of transportation problems.	Student demonstrates the ability to identify and solve transportation problems.	Lectures, practical works, individual work, group work, consulting	Mid-term exam, assessment of practical works
4	Knowledge and understanding of discrete and integer programming problems.	Student demonstrates the ability to identify and solve discrete and integer programming problems.	Lectures, practical works, individual work, group work, consulting	Final exam, assessment of practical works
5	Knowledge of mathematical techniques in network models.	Student demonstrates the ability to identify and solve network type problems.	Lectures, practical works, individual	Final exam, assessment of practical works

			work, consulting	
6	Knowledge and understanding of	Student demonstrates the	Lectures,	Final exam,
	nonlinear programming problems.	ability to identify and solve	practical works,	assessment of
		nonlinear programming	individual	practical works
		problems.	work,	
			consulting	

Links between study programme outcomes and course outcomes

Study programme outcomes	Running number of course outcome					
	1	2	3	4	5	6
Know and comprehend concepts and propositions of fundamental mathematical subjects, recognize and apply them solving practical/theoretical tasks	+	+	+	+	+	+
Summarize and evaluate critically scientific and professional literature, as well as use various tools for collecting of information for the study process and for solving fixed practical/theoretical problems	+	+	+	+	+	+
Identify the problem, collect and analyze real/theoretical data using various mathematical methods, tools and IT technologies	+		+	+	+	+
Think logically and analytically, evaluate alternative ways of task solving and implement optimal solutions	+		+	+	+	+
Work individually and/or in groups by developing and adopting appropriate mathematical models and tools for use in case analysis	+		+	+	+	
Demonstrate awareness of economic, legal, social, ethical and environmental context in mathematical projects	+		+	+	+	

Content

No	Content (topics)				
1.	Concept of optimization problem. Main types of optimization problems.				
2.	Convex sets and functions.				
3.	Linear programming.				
4.	Graphical solution method of linear programming problem.				
5.	Simplex method.				
6.	Dual Simplex method.				
7.	Transportation problems.				
8.	Discrete optimization.				
9.	Integer programming.				
10.	Network models.				
11.	Multicriteria optimization.				
12.	Nonlinear programming.				

Distribution of workload for students (contact and independent work hours)

Distribution of wormout for students (contact and macpendent worm nours)					
Lectures	45 hours				
Practical work	30 hours				
Individual students work	85 hours				
Total:	160 hours				

Structure of cumulative score and value of its constituent parts

Final written exam (50%), mid-term written exam (25%), assessment of practical work (25%).

Recommended reference materials

No	Dublicat	A with any of	Publishi	Number of copies in				
NO	ion year	publication and title	ng house	University library	Self study rooms	Other libraries		

Basic materials						
1	2000	A. Žilinskas. Matematinis programavimas. (Mathematical Programming)	VDU	83	2	
2	2005	A. Apynis. Optimizavimo metodai. (Optimization Methods)	VU	0	1	
3	2007	S. Kalanta. Taikomosios optimizacijos pagrindai. (Fundamentals of Applied Optimization)	VGTU	5	1	http://www.ebooks.vgtu.lt/pro duct/taikomosios- optimizacijos-pagrindai
			Suppleme	ntary materia	als	
1	2007	H.A. Eiselt, C.L. Sandblom. Linear programming and its applications	Springer			
2	1995	D. Bertsekas. Nonlinear programming	Athena Scientifi c			
Cours	se progran	nme designed by				
Asso	c. prof. dr.	. Sigita Pečiulytė				