Subject code	ECTS credits
MAT4015	6

Course title in Lithuanian

IŠGYVENAMUMO ANALIZĖ

Course title in English

SURVIVAL ANALYSIS

Short course annotation in Lithuanian (up to 500 characters)

Įgyjamos žinios apie išgyvenamumo analizės metodus ir jų praktinį taikymą medicinos duomenų analizėje. Kurso metu gaunamos žinios apie cenzūruotus duomenis, išgyvenamumo bei rizikos funkcijos parametrinius modelius, Kaplano-Mejerio įvertį, išgyvenamumo funkcijų palyginimą, regresinius išgyvenamumo modelius, proporcingos regresijos modelį bei praktinį taikymą šių metodų taikymą. Kurso metu taip pat įgyjami praktiniai įgūdžiai naudojant SPSS bei R programų paketus, įvertinti ir palyginti išgyvenamumo funkcijas, sudaryti Kokso regresinį modelį, sudaryti nepalankios prognozės rizikos įvertį.

Short course annotation in English (up to 500 characters)

Acquired knowledge of the survival's methods and its applications for medical data. The course will provide the knowledge to censored data, the parametric models of survival and risk functions, the comparison of survival curves, regression models of survival function, Cox's proportional hazards model and gain of these survivals methods. After completion of this course students will be competent to use of statistical packages SPSS and R for estimate and compare survivals functions, able to create Cox model and risk score for failure event.

Prerequisites for entering the course

Mathematical Analysis, Probability Theory, Mathematical Statistic

Course aim

The aim of the course is to provide knowledge of survival analysis and it application for medical data. Links between course outcomes, criteria of learning achievement evaluation, study methods and methods of learning achievement assessment

No	Course outcomes	Criteria of learning achievement evaluation	Study methods	Methods of learning achievement assessment
1.	Knowledge and understanding of	Student demonstrates	Lectures,	Mid-term exam,
	censoring, assessment the survival	the ability to assess the	practical works,	Assessment of
	function, and compare few	survival function,	individual work,	practical works
	survival functions	hazard function, and	consulting	
		use log-rank test.		
2.	Knowledge and understanding of	Student demonstrates	Lectures,	Mid-term exam,
	regression survival models	the ability to assess the	practical works,	Assessment of
		unknown parameters	individual work,	practical works
		of the model by using	consulting	
		R package		
3.	Knowledge and understanding of	Student demonstrates	Lectures,	Final exam,
	proportional regression survival	the ability to assess the	practical works,	assessment of
	models, competing Risks models,	parameters in the Cox	individual work,	practical works
	and counting process approach in	model by using R	consulting	
	the survival analysis	package		
4.	Perform the assessment of the risk	Student estimated the	Lectures,	Final exam,
	in the epidemiological and clinical	odds ratio and hazard	practical works,	assessment of
	studies	ratio by using logistic	individual work,	practical works
		and Cox model	consulting	

Study programme outcomes		Running number of course outcome			
	1	2	3	4	
Comprehend and be able to apply probabilistic and statistical methods for data analysis	+	+	+	+	
Summarize and evaluate critically scientific and professional literature, as well as use various tools for collecting of information for the study process and for solving fixed practical/theoretical problems			+	+	
Identify the problem, collect and analyze real/theoretical data using various mathematical methods, tools and IT technologies	+	+	+	+	
Think logically and analytically, evaluate alternative ways of task solving and implement optimal solutions		+	+	+	
Work individually and/or in groups by developing and adopting appropriate mathematical models and tools for use in case analysis	+	+	+		
Demonstrate awareness of economic, legal, social, ethical and environmental context in mathematical projects			+	+	

Links between study programme outcomes and course outcomes

No	Content (topics)		
1.	Medical data; statistical methods for analyze of medical data. Survival data.		
2.	Censoring. Survival function, risk function.		
3.	Parametric survival models. The assessment of unknown parameters. Maximum likelihood method.		
4.	Kaplan-Meier estimator.		
5,	Compare two and more survival functions. Log-rank test.		
6.	Analyses using the R package "survival"		
7.	Regression survival models.		
8.	Proportional Hazard Models. Cox model. Time-varying Covariates		
9.	Risk assessment by using logistic regression and Cox model. Hazard ratio.		
10.	Competing Risks Survival Analysis. Other survival models.		
11.	An Introduction to the Counting Process Approach to Survival Analysis.		

Distribution of workload for students (contact and independent work hours)

Lectures	45 hours
Practical work	30 hours
Individual students work	85 hours
Total:	160 hours

Structure of cumulative score and value of its constituent parts

Final written exam (50%), mid-term written exam (25%), assessment of practical work (25%).

Recommended reference materials

Content

No	Publicatio n year	Authors of publication and title	Publishing house	Number of copies in		
				University library	Self study rooms	Other libraries
	Basic materials					
1.	2010	Venclovienė, Jonė Statistiniai metodai medicinoje	Kaunas : Vytauto Didžiojo universitetas	8	5	

2.	2012	Xian Liu Survival Analysis: Models and Applications	Wiley	1		
3.	2003	Lee ET, Wang JW Statistical methods for survival data	Wiley- interscience	http://evunix.uevora.pt/~pinfante/eb1011/Maths%20&% 20Stats%20- %20Statistical%20Methods%20for%20Survival%20Dat a%20Analysis%20- %203rd,2003%20%5BWiley%5D.pdf		
	Supplementary materials					
1.	2016	Moore DF Applied Survival Analysis Using R	Springer			
Cours	Course programme designed by					
Prof.	Prof. dr. Jonė Venclovienė					