Subject code	ECTS credits
MAT5017	6

Course title in Lithuanian

DIFERENCIALINIŲ LYGČIŲ TAIKYMAI

Course title in English

APPLICATIONS OF DIFFERENTIAL EQUATIONS

Short course annotation in Lithuanian (up to 500 characters)

Realios situacijos matematinio modelio esmė ir modeliavimo metodai. Diferencialinių lygčių analitiniai ir skaitiniai sprendimo metodai. Kokybinė diferencialinių lygčių teorija ir jos taikymai. Mechanikos, fizikos, chemijos, biologijos ir ekonomikos matematiniai modeliai, taikant diferencialines lygtis. Matematinių modelių realizavimo ir kalibravimo metodai.

Short course annotation in English (up to 500 characters)

Mathematical modelling of the real situation (sense and methods). Differential equations solving methods (analytical and numerical). Qualitative theory of differential equations. Applications of differential equations to mechanics, physics, biology and economics. Mathematical models and their realization and calibration.

Prerequisites for entering the course

Mathematical Analysis (integration), Differentials Equations, Numerical methods

Course aim

Course aim is to provide knowledge of basic concepts of mathematical modelling

Links between course outcomes, criteria of learning achievement evaluation, study methods and methods of learning achievement assessment

No	Course outcomes	Criteria of learning achievement evaluation	Study methods	Methods of learning achievement assessment			
1.	Knowledge and understanding of mathematical models	Student demonstrates the ability to understanding of mathematical models sense.	Lectures, practical works, individual work, consulting	Mid-term exam, Assessment of practical works			
2.	Knowledge and understanding of an analytical methods of differential equations solving	Student demonstrates the ability to understanding of analytical methods of differential equations solving	Lectures, practical works, individual work, consulting	Mid-term exam, Assessment of practical works			
3.	Knowledge and understanding of an numerical methods of differential equations solving	Student demonstrates the ability to understanding of a numerical methods of differential equations solving	Lectures, practical works, individual work, consulting	Mid-term, Assessment of practical works			
4.	Knowledge and understanding of the qualitative theory of differential equations	Student demonstrates the ability to understanding of the qualitative theory of differential equation	Lectures, practical works, individual work, consulting	Final exam, Assessment of practical works			
5.	Knowledge and understanding of the applications of differential equations to mechanics, physics, biology and economics	Student demonstrates the ability to understanding of the applications of differential equations to mechanics, physics, biology and economics	Lectures, practical works, individual work, consulting	Final exam, Assessment of practical works			
Links between study programme outcomes and course outcomes							

Study programme outcomes	Run		numbe outcom	r of co e	urse
	1	2	3	4	5

1. Deepen and expand general knowledge of mathematics and apply it in a new non-standard environment	+				+
2. Broaden and apply the knowledge of mathematical modelling for the economy and technical systems	+	+	+	+	+
4. Identify, select and understand the state-of-the-art literature of mathematics and apply the gained knowledge to specific scientific and practical tasks		+	+	+	+
7. Analyse, understand and use mathematical methods	+	+	+	+	+

Content

1.Differential equations as mathematical models2.Ordinary Differential equations of elasticity theory3.Bars with continuously varying loads and/or dimensions4.An analytical solution for Kepler's problem5.Equations of motion in an internal frame (two body problem)6.Circular, elliptical, parabolic and hyperbolic trajectories7.Restricted three body problem8.Second order nonlinear autonomous systems (qualitative approach)	No Content (topics)					
 Bars with continuously varying loads and/or dimensions An analytical solution for Kepler's problem Equations of motion in an internal frame (two body problem) Circular, elliptical, parabolic and hyperbolic trajectories Restricted three body problem Second order nonlinear autonomous systems (qualitative approach) 						
 4. An analytical solution for Kepler's problem 5. Equations of motion in an internal frame (two body problem) 6. Circular, elliptical, parabolic and hyperbolic trajectories 7. Restricted three body problem 8. Second order nonlinear autonomous systems (qualitative approach) 						
 5. Equations of motion in an internal frame (two body problem) 6. Circular, elliptical, parabolic and hyperbolic trajectories 7. Restricted three body problem 8. Second order nonlinear autonomous systems (qualitative approach) 						
 6. Circular, elliptical, parabolic and hyperbolic trajectories 7. Restricted three body problem 8. Second order nonlinear autonomous systems (qualitative approach) 	4. An analytical solution for Kepler's problem					
 7. Restricted three body problem 8. Second order nonlinear autonomous systems (qualitative approach) 						
8. Second order nonlinear autonomous systems (qualitative approach)	6. Circular, elliptical, parabolic and hyperbolic trajectories					
9. Adaptive Runge-Kutta method for solving Cauchy problem of nonlinear autonomous systems						
Distribution of workload for students (contact and independent work hours)						

Lectures	45 hours
Practical work	15 hours
Individual students work	100 hours
Total:	160 hours

Structure of cumulative score and value of its constituent parts Final written exam (50%), mid-term written exam (25%), and assessments of practical works (25%). Recommended reference materials

NI-	D1-1242	Authors of publication and title	D	Number of copies in			
No	Publicati on year		Publishing house	University library	Self study rooms	Other libraries	
			Basic mate	erials			
		Samarskii,A.A.,	Taylor &				
		Mikhailov,A.P.,	Francis,				
1.	2001	Principles of	London		1		
1.	2001	Mathematical			1		
		Modelling - Ideas,					
		Methods, Examples					
		Leonavičienė, T.,	Technika,				
2	2013	Čiegis, R., Kirjackis J.	Vilnius	2	2	Textbook online	
2.		Diferencialinės lygtys		2		Textbook online	
		ir jų taikymas					
		Mathematical	Butterwort,				
3.	1076	modelling Ed. by J.	London		1		
3.	1976	Andrews and					
		R. MacLone,					
	2009	Kleiza, V. Laplaso	Technologija				
4		transformacija:	, Kaunas		2		
4.		kompiuterinės			2		
		algebros metodai.					
			Supplementary	materials			
		J. Farlow, J. Hall, J.	Prentice				
1	2002	McDill, B. West.	Hall, New				
1.		Differential equations	Jersey				
		& linear algebra	-				

Course programme designed by Prof. habil.dr.Vytautas Kleiza