Subject code	ECTS credits
MAT5018	6

Course title in Lithuanian

OPERACIJŲ TYRIMAS Course title in English

OPERATIONS RESEARCH

Short course annotation in Lithuanian (up to 500 characters)

Šis kursas — tai įvadas į operacijų tyrimą. Pagrindinis dėmesys kreipiamas į tiesinių deterministinių uždavinių sprendimo metodus ir rezultatų analizę. Temos apima tiesinio programavimo uždavinių savybes, dualumo teoriją, jautrumo analizę, sveikaskaitį programavimą, tikslinį programavimą, dinaminį programavimą ir matricinius lošimus.

Short course annotation in English (up to 500 characters)

This course is an introduction to operation research, with an emphasis on techniques for the solution and analysis of deterministic linear models. The topics covered include: mathematical properties of linear programming models, duality theory, sensitivity analysis, integer programming, goal programming, dynamic programming and matrix games.

Prerequisites for entering the course

Algebra, Optimization Methods.

Course aim

To provide knowledge in the main models of operation research. To familiarize with possibilities of solving and analysis of all these problems using R programing language.

Links between course outcomes, criteria of learning achievement evaluation, study methods and methods of learning achievement assessment

No	Course outcomes	Criteria of learning achievement evaluation	Study methods	Methods of learning achievement assessment		
1.	Basic concepts of linear,	Student is able identify and	Lectures,	Final exam, mid-		
	integer and goal	solve problems which can be	practical works,	term exam,		
	programming.	formulated as a linear, integer	individual work,	assessment of		
		and goal programming problem.	consulting.	practical works.		
2.	Understanding the	Student is able to formulate,	Lectures,	Final exam, mid-		
	relationship between a	write and solve dual problem.	practical works,	term exam,		
	linear programming		individual work,	assessment of practical works.		
	problem and its dual.		consulting.			
3.	Apply mathematical	Student is able to solve network	Lectures,	Mid-term exam,		
	techniques in network	models like the shortest path and	practical works,	assessment of		
	models and scheduling	maximum flow problems.	individual work,	practical works.		
	problems.		consulting.			
4.	Understanding how to	Student recognizes problems,	Lectures,	Final exam, mid-		
	model and solve	which can be solved using	practical works,	term exam,		
	problems using dynamic	dynamic programming	individual work,	assessment of		
	programming.	approach.	consulting.	practical works.		
5.	Understand the	Student is able to formulate a	Lectures,	Mid-term exam,		
	mathematical tools that	real-world problem as a	practical works,	assessment of		
	are needed to solve	mathematical model and solve it	individual work,	practical works.		
	optimisation problems.	using R software.	consulting.			
Links	between study programme	e outcomes and course outcomes				
			Ru	nning number of		

Study programme outcomes	course outcome				
	1	2	3	4	5
1. Deepen and expand general knowledge of mathematics and apply it in a new non-standard environment	+	+	+	+	+

2. Broaden and apply the knowledge of mathematical modelling for the economy and technical systems	+	+	+	+	+
. Identify, select and understand the state-of-the-art literature of mathematics nd apply the gained knowledge to specific scientific and practical tasks		+	+	+	+
5. Develop mathematical models integrating the knowledge from various fields and different mathematical modelling techniques, and analyse the modelling results assessing the model adequacy and accuracy			+	+	+
7. Analyse, understand and use mathematical methods	+	+	+	+	+
12. Make decisions independently					+

Content	i la			
No	Content (topics)			
1.	Linear programming models. Simplex method.			
2.	Integer programming. Branch and bound algorithm.			
3.	Dual and primal problems. Sensitivity analysis.			
4.	Goal programming.			
5.	Dynamic programming.			
6.	Network models.			
7.	Matrix and bimatrix games. Optimal strategies.			
8.	Project management models. Critical path method.			
9.	Nonlinear programming.			
Distribu	ition of workload for students (contact and independent work hours)			

Lectures	45 hours
Practical work	15 hours
Individual students work	100 hours
Total:	160 hours

Structure of cumulative score and value of its constituent parts Final written exam (50%), mid-term written exam (25%), assessment of practical works (25%).

Recommended reference materials

No	Publicatio n year	Authors of	Dublishis -	Number of copies in			
		publication and title	Publishing house	University library	Self study rooms	Other libraries	
			Basic m	aterials			
1.	2011	Taha H.A.	Prentice		1		
		Operation reseach.	Hall				
		An introduction.					
2.	1990	Čiočys V.,	Vilnius,	1	1		
		Jasilionis R.	Mokslas				
		Matematinis					
		programavimas					
			Supplementa	ry materials			
		Matoušek J.,					
		Gärtner B.					
1.	2008	Understanding and	Springer				
		Using Linear					
		Programming					
		Vakrinienė S.					
n	2003	Operacijų tyrimas	Vilnius,				
2.	2005	programine įranga	Technika				
		SAS/OR					
Cours	se programm	e designed by					
Asso	c. prof. dr. To	omas Rekašius					