

Department of Engineering for Innovation University of Salento Lecce, Italy

Virtual and Augmented Reality Applications in Cultural Heritage

Lucio Tommaso De Paolis Augmented and Virtual Reality Laboratory (AVR Lab)

VR in Cultural Heritage

MediaEvo Project

Development of a multi-channel and multisensory platform for the edutainment in cultural heritage

Otranto as an example town

It played an important role in the Middle Ages from a political and cultural point of view

Due to its geographical position Otranto was like a bridge between East and West

We focused on the Swabian Age (XIII century)

MediaEvo Project

Virtual Landscape

Virtual Landscape

Ages Comparison

Paths and Interest Points

Navigation modes

- Guided navigation (4 main paths)
- > Free navigation

Access and interaction levels of the avatar-player

Interactions

- Graphic interaction (trigging)
- Textual interaction among players (chat)
- Vocal interaction among players (external vocal module)

Navigation with WiiMote and Balance Board

The aim is to make the interaction easier for users without any experience of navigation in a virtual world and more efficient for trained users

We use some intuitive input devices that can increase the sense of immersion

Since the frequency of communication between the Wii console and the Wiimote/ Balance Board are those of the standard Bluetooth, these devices can be used as tools to interact with any computer equipped with the same technology

Navigation with WiiMote and Balance Board

Because we walk on our feet, controlling walking in Virtual Reality could be felt as more natural when done with the feet than with other modes of input

The Nintendo Balance Board as input device for navigation that offers a new and accessible way to gain input

In addition, in order to implement the control of different views and to change the point of view of the user, we use the Nintendo Wiimote

Virtual Treasure Hunt

Within the MediaEvo Project it has been also developed a "virtual treasure hunt" using an iPhone as a device to find and read the clues of the game

The Augmented Reality has been used for geolocating the points of interest (POI) and the visualization of useful and interesting data that are overlapped on the video stream of the iPhone camera

Virtual Treasure Hunt

Once the player is close to a POI, a marker that indicates the presence of a clue is visualized on the iPhone screen and superimposed on the images captured by the camera

Touching the marker in the screen, the description of the stage is shown

Augmented Reality Applications

Augmented Reality Applications

Museo delle Pure Forme

Augmented Reality on mobile

Augmented Reality Applications

Marker detection

Markerless detection

• GPS + compass

Augmented Reality Visualization

The markers are observed by a webcam and the tracking software is able to calculate the marker position and orientation from the captured image

In this way it is possible to visualize the virtual information associated with the specific marker which can be used as a tangible interface to handle virtual artefacts or as user interface elements

Augmented Reality Visualization

Augmented Reality

• Marker detection

Markerless detection

AR in Cultural Heritage – St. Caterina Church

Augmented Reality

• Marker detection

Markerless detection

AR in Cultural Heritage – Ancient Rome

Department of Engineering for Innovation University of Salento Lecce, Italy

Lucio Tommaso De Paolis

lucio.depaolis@unisalento.it

Augmented and Virtual Reality Laboratory (AVR Lab) www.avr.unisalento.it